Highly Efficient and Specific Genome Editing in Silkworm Using Custom TALENs

نویسندگان

  • Sanyuan Ma
  • Shengling Zhang
  • Feng Wang
  • Yong Liu
  • Yuanyuan Liu
  • Hanfu Xu
  • Chun Liu
  • Ying Lin
  • Ping Zhao
  • Qingyou Xia
چکیده

Establishment of efficient genome editing tools is essential for fundamental research, genetic engineering, and gene therapy. Successful construction and application of transcription activator-like effector nucleases (TALENs) in several organisms herald an exciting new era for genome editing. We describe the production of two active TALENs and their successful application in the targeted mutagenesis of silkworm, Bombyx mori, whose genetic manipulation methods are parallel to those of Drosophila and other insects. We will also show that the simultaneous expression of two pairs of TALENs generates heritable large chromosomal deletion. Our results demonstrate that (i) TALENs can be used in silkworm and (ii) heritable large chromosomal deletions can be induced by two pairs of TALENs in whole organisms. The generation and the high frequency of TALENs-induced targeted mutagenesis in silkworm will promote the genetic modification of silkworm and other insect species.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Germline-Transmitted Genome Editing in Arabidopsis thaliana Using TAL-Effector-Nucleases

Transcription activator-like effector nucleases (TALENs) are custom-made bi-partite endonucleases that have recently been developed and applied for genome engineering in a wide variety of organisms. However, they have been only scarcely used in plants, especially for germline-modification. Here we report the efficient creation of small, germline-transmitted deletions in Arabidopsis thaliana via...

متن کامل

A robust TALENs system for highly efficient mammalian genome editing

Recently, transcription activator-like effector nucleases (TALENs) have emerged as a highly effective tool for genomic editing. A pair of TALENs binds to two DNA recognition sites separated by a spacer sequence, and the dimerized FokI nucleases at the C terminal then cleave DNA in the spacer. Because of its modular design and capacity to precisely target almost any desired genomic locus, TALEN ...

متن کامل

Genome engineering via TALENs and CRISPR/Cas9 systems: challenges and perspectives.

The ability to precisely modify genome sequence and regulate gene expression patterns in a site-specific manner holds much promise in plant biotechnology. Genome-engineering technologies that enable such highly specific and efficient modification are advancing with unprecedented pace. Transcription activator-like effectors (TALEs) provide customizable DNA-binding modules designed to bind to any...

متن کامل

Optimized TAL effector nucleases (TALENs) for use in treatment of sickle cell disease.

TAL effector nucleases (TALENs) represent a new class of artificial nucleases capable of cleaving long, specific target DNA sequences in vivo and are powerful tools for genome editing with potential therapeutic applications. Here we report a pair of custom-designed TALENs for targeted genetic correction of the sickle cell disease mutation in human cells, which represents an example of engineere...

متن کامل

Optimized TAL effector nucleases (TALENs) for use in treatment of sickle cell diseasew

TAL effector nucleases (TALENs) represent a new class of artificial nucleases capable of cleaving long, specific target DNA sequences in vivo and are powerful tools for genome editing with potential therapeutic applications. Here we report a pair of custom-designed TALENs for targeted genetic correction of the sickle cell disease mutation in human cells, which represents an example of engineere...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2012